

How to Work with your Statistician

Fang-Shu Ou Assistant Professor of Biostatistics Mayo Clinic

Alliance Fall Group Meeting November 2, 2017

Outline

- Why you need a statistician
- What statisticians do
- How to work with your statistician
- Conclusion

Why Do You Need a Statistician?

- In clinical research, we use treatment effect observed in patients treated on a trial (*sample*) and generalize it to all patients (*population*) with those conditions
- Conclusions drawn from trials
 - assume patients on the trial are representative sample of the population

based on statistical inference – hypothesis testing, estimation

Why Do You Need a Statistician?

- Statistical tests are valid under only certain assumptions and statisticians are trained to understand these assumptions
- They can help ensure
 - Study is designed in a way that
 - Satisfies the appropriate assumptions
 - Minimizes bias and confounding factors
 - Appropriate analysis is planned at trial completion

Why Do You Need a Statistician?

- For secondary analysis
 - The statistician who works on the original trial knows the data best
 - Provide insight toward whether certain analysis is feasible based on the available data

What Can a Statistician Do?

Design stage

- Provide scientific input
- Translate clinical questions into statistical hypotheses
- Participate in trial design not just sample size calculations (more on this later)
- Formulate an analysis plan
- Provide input in data collection plan
 - CRFs

Database

What Can a Statistician Do?

During trial

- Safety monitoring
- DSMB report
- Interim analysis
- End of trial
 - Analyze data
 - Provide analysis report
 - Participate in abstract/manuscript writing

What Can a Statistician Do?

- Secondary analysis
 - Translate clinical questions into statistical hypotheses
 - Collaborate on proposal writing for use of NCTN clinical trial biospecimens (power calculation, analysis plan, and beyond)
 - Analyze data
 - Provide analysis report
 - Participate in abstract/manuscript writing

Ultimate Goal

Help design and conduct *feasible*, *valid*, and *successful** trials and secondary analyses

*successful ≠ positive

How to Work with your Statistician

https://www.youtube.com/watch?v=Hz1fyhVOjr4

Contact your statistician as early as possible

- Most statisticians are involved in multiple projects
 - In addition to methodology research, teaching, and service
 - Assigned to multiple committees
- Interactive and *iterative* process (more on this later)
- Provide sufficient time to plan the study

What to expect at the initial meeting?

- Provide background information
 - Disease we want to understand the science behind the study
 - What is known about disease or treatment
- What does statistician want to know?
 - Objectives of study (your hypothesis)
 - Outcomes/endpoints to assess objectives
 - How are they measured
 - At what time point

What to expect at the initial meeting?

- Your *initial* plan (iterative)
 - Eligibility
 - Accrual rate/duration
 - Sample size limitations if exists
- Timeline
- Funding
 - not applicable for Alliance-funded studies

What to expect at the initial meeting?

- For secondary analysis
 - Bring your preliminary hypothesis
 - Bring a few published manuscripts (for scientific background)
 - Be prepared to explain the science

Trial Elements Affecting Study Design

Background Phase Number of arms **Objectives/Endpoints** Treatment assignment Patient eligibility Blinding Protoco Interim analysis intervention(s) Sample size Follow-up schedule Trial duration

How Background Affects Study Design

- Purpose
 - Summarizes previous work
 - Justifies the new trial
- Provides
 - Outcome estimates (historical control)
 - Treatment effect
- Design elements affected (all)
 - Phase
 - Number of arms
 - Randomization/blinding
- Interim analysis
- Sample size
- Trial duration

How Objectives/Endpoints Affect Study Design

- Purpose Defines objectives/endpoints
- Provides
 - Type of response
 - Response time point
- Design element affected:
 - Phase

- Sample size (methodology)
- Number of arms
- Trial duration (timing of response)
- Randomization

How Eligibility Affects Study Design

- Purpose
 - Sets criteria for patients to be included in trial
- Provides
 - Type of patients included in trial
 - Disease, stage, molecular profile
 - Age, performance status etc...
- Design element affected
 - Sample size
 - Outcome estimate (historical control)
 - Adherence, withdrawal, drop-out
 - Enrollment rate

Interactive and Iterative Process

- Stating research aims (objectives)
 - Primary? Secondary(ies)?
- Determining outcomes (endpoints)
 - Toxicity? PFS?
- Choosing experimental design
 - Single arm? Randomized?
- Developing analysis plan
 - Descriptive statistics? T-test? Survival analysis?
 - Sample size justification

Hypothesis is the Driver for Secondary Analysis

- Hypothesis defines your
 - Population
 - Outcome
 - Variable of interest
 - The relationship between outcome and variable of interest
- Well defined hypothesis is the key to successful secondary analysis project

Conclusion

- Contact your statistician early and often
 - A good plan is the key to success
- Stay engaged and be interactive

Thank You!

